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We define webs to be the collections of producers and consumers (e.g., functions and calls) in a program
that are constrained: in higher-order languages, multiple functions can flow to the same call, all of which
must agree on an interface (e.g., calling convention). We argue that webs are fundamentally the unit of
transformation: a change to one member requires changes across the entire web. We introduce a web-centric
intermediate language that exposes webs as annotations, and describe web-based (that is, flow-directed)
transformations guided by these annotations. As they affect all members of a web, these transformations
are interprocedural, operating over entire modules. Through the lens of webs we reframe and generalize
a collection of transformations from the literature, including dead-parameter elimination, uncurrying, and
defunctionalization, as well as describe novel transformations. We contrast this approach with rewriting
strategies that rely on inlining and cascading rewrites.

Webs are an over-approximation of the semantic function-call relationship produced by control-flow
analyses (CFA). This information is inherently independent from the transformations; more precise analyses
permit more transformations. A limitation of precise analyses is that the transformations may not maintain
well-typedness, as the type system is a less-precise static analysis. Our solution is a simple and lightweight
typed-based analysis that causes the flow-directed transformations to preserve well-typedness, making
flow-directed, type-preserving transformations easily accessible in many compilers. This analysis builds on
unification, distinguishing types that look the same from types that have to be the same. Our experiments
show that while our analysis is theoretically less precise, in practice its precision is similar to CFAs.
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1 Introduction
At the heart of many program transformations is implicit reasoning about the relationship between
functions and their calls. For example, dead-parameter elimination (DPE) deletes unused parameters
from a function and the corresponding arguments from its calls. In functional languages, functions
being first-class values complicate this reasoning; they can be passed as arguments, returned from
other functions, and stored in data structures. This is exemplified by the OCaml program (a).
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(a)

let f = fun (x1, y1) -> x1 + 3 in

let g = fun (x2, y2) -> x2 + 4 in

let k = fun h -> (h (1, 2)) in

(k f) + (k g)

(b)

let f = fun (x1, y1) -> x1 + 3 in

let g = fun (x2, y2) -> x2 + y2 in

let k = fun h -> (h (1, 2)) in

(k f) + (k g)

Both f and g have a dead second parameter, but DPE cannot be applied without knowing where they
are called. As they are both higher-order arguments to k, their calls are not syntactically apparent;
static analysis is needed to determine their calls. Such an analysis would find that (h (1, 2)) is
the only call for both. Knowing this, a compiler can proceed with DPE. If g’s parameter is not dead
as in (b), however, f’s dead parameter cannot be eliminated because f and g must have the same
interface: sharing a call constrains f, g, and (h (1, 2)) to agree on the number of arguments.

The producer-consumer relationship is the key. The semantic function-call relationships can be
described with a bipartite graph on s and calls, where an edge indicates a possible run-time call:

fun (x1, y1) -> _ fun (x2, y2) -> _

(h (1, 2))

fun h -> _

(k f) (k g)

All elements of each connected component are constrained together, as transformations to functions
and calls must occur on a per-component basis: deleting a ’s dead parameter means deleting an
argument from its calls, which means deleting a parameter from the other s those calls invoke,
and so on. Every element of the component must be touched — it is the unit of transformation.
These components are important, so they deserve a good, concise name: we call them webs,

borrowing the name fromMuchnick [26], who introduces “definition-use” webs between definitions
and uses of variables in SSA: mutable variables and join points allow for multiple definitions.
Whenever there is a producer-consumer relationship, there are webs. This paper proposes that
webs are a useful lens for viewing transformations to functions, and more generally, any producer-
consumer relationship. Towards this goal, we define an intermediate language that annotates
producers and consumers (e.g., functions and calls) with their web, and describe how many standard
transformations can be generalized by framing them in terms of webs.
Many modern compilers perform transformations such as DPE, uncurrying, and inlining only

on known functions [4], which are functions that are bound to a variable and only used in func-
tion position. We call these syntactic webs. Presumably this choice is due to the extra effort and
compilation time required to (1) compute webs via a static analysis, (2) ensure the condition for
an optimization is satisfied for all members of the web (e.g., all s have a shared dead parameter),
and (3) apply the transform to the whole web. Sophisticated rewriting systems such as GHC use
wrappers and inlining [17] to expose these connections, propagating changes from functions to
their calls. While this approach works well for higher-order behavior, it requires careful tuning [21]
and has limitations, such as functions that escape into data structures. Webs shortcut this process
by exposing the calls of functions before changes even occur; intermediate places functions flow
through do not need to be inspected. Because of this, web-based, or flow-directed, transformations
are inherently interprocedural as they involve touching many non-local program locations at once;
they are semantically local by connecting producer directly to consumer. Webs provide a generaliz-
ing, unifying view for approaching program transformations; restricting webs to known functions
recovers the original syntactic transformations.

To improve over syntactic approaches, compilers turn to control-flow analyses (CFA) that compute
the semantic function-call relationship. The usefulness of webs is well-established by past work that
uses CFAs, such as defunctionalization [35] in MLton [10], which uses the semantic information to
specialize function-call relationships, making it so that every call knows exactly which  is applied.
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CFA vs. type systems. One technical challenge of using such CFAs is that they consider a smaller set of
program behaviors than what the type system describes, meaning that flow-directed transformations
may leave a program ill-typed. As a simple, somewhat reductive, example:

let f = fun a1 a2 -> a1 + 1 in

let g = fun b1 b2 -> b1 + b2 in

let choose = fun (b : bool) (f : ’a) (g : ’a) -> if b then f else g

((choose true f g) 1 2)

As choose returns f to r, a CFA finds that the webs are {f, (r 1 2)} and {g}. Since a2 is dead and f

is the web’s only function, a2 can be eliminated. This would leave the program ill-typed, however:
choose takes two arguments of the same type, which is effectively the type system accounting for a
trace where g flows to r. While this is an intentionally simple example that could be solved through
inlining or marking the body of g as unreachable, it highlights that the mismatch between the CFA
and the type system means that some flow-directed transformations will break well-typedness.
One solution is to encode the flow information in the type system itself. [5, 9, 11, 27, 36] This

comes at the cost of (1) complex typing rules effectively encoding the CFA, (2) complex inference,
or (3) difficulty of preserving such information through a broad spectrum of transformations. An
alternative approach is to use a less-precise analysis that respects types. For example, type-directed
transformations [6, 44] use a very coarse function-call relationship, but easily maintain types.

Our solution takes the best of both worlds. It (1) encodes webs through a simple extension of the
simply-typed -calculus, (2) has lightweight, easy-to-implement inference, and (3) easily preserves
these types through the myriad generalized web-based transformations. Additionally, we have
found that it (4) is comparable in precision with CFAs. We believe our solution, along with our
meta-theory of web-based transformations, makes it easy for new and existing compilers alike to
implement flow-directed transformations.

On top of framing webs as a unifying perspective, our contributions are:
• A web-annotated intermediate language that highlights webs as an explicit structuring mecha-
nism. This perspective applies whenever there is a producer-consumer relationship. (Section 2)

• A type system that exposes webs as a simple extension of the simply-typed -calculus which
can be generalized to type systems of existing languages, and a lightweight inference procedure
building on unification, delivering webs at the same time as types. (Section 2)

• A framework for describing web-based transformations. For our type-based webs, these are
simultaneously type-directed, flow-directed, and type-preserving. (Section 3)

• Descriptions of web-based transformations, including (1) generalizations of contractive and
interface transformations such as DPE and uncurrying, (2) code-motion transformations such
as arity raising, constant propagation, and inlining that exploit how webs provide a notion
of semantic locality by directly connecting producers to consumers, and (3) generalizations of
web-splitting transformations such as defunctionalization. (Section 4)

• A discussion of implementation strategies for these transformations. (Section 5)
• An evaluation demonstrating that on our benchmarks, our type-based webs provide comparable
quality to traditional CFAs. (Section 6)

2 An Intermediate Language for Webs
This section introduces the web-based intermediate language. The key features of this intermediate
language are annotations u called web identifiers on, in particular, every function and call in the
program. Given a bipartite graph describing “which functions are called where,” produced by some
static analysis, a compiler can assign a unique web identifier to every connected component. Then, it
annotates the functions and calls in the term with their identifiers. Fundamentally, these identifiers
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Web Ids u ::=  , , , ...
Types  ::= B | ⟨ #„ ⟩→u  | ×u⟨ #„ ⟩ | +u⟨ #„ ⟩
Variables x, y
Numbers n, i ∈ N
Expressions ,  , arg ::= x | b | let #„x : #„ = #„ in 

| u⟨ #„x : #„ ⟩  | appu  ⟨ #„ ⟩ Functions
| produ⟨ #„ ⟩ | projui  Products
| inu

i  | matchu 


# „

cls


Sums
Clauses cls ::= x ↦→ 

Fig. 1. Language definition containing web constraints

Typing Contexts Γ ::=  | Γ, x : 
Typing Judgements Γ ⊢  : 

Typing Rules
Γ ⊢ b : B

x :  ∈ Γ

Γ ⊢ x : 
Γ ⊢ #„ : #„ Γ, #„x : #„ ⊢  : 

Γ ⊢ let #„x : #„ = #„ in  : 

Γ, #„x : #„ ⊢  : 
Γ ⊢ u⟨ #„x : #„ ⟩  : ⟨ #„ ⟩→u 

Γ ⊢ #„ : #„

Γ ⊢ produ⟨ #„ ⟩ : ×u⟨ #„ ⟩
Γ ⊢  : 

Γ ⊢ inu
i  : +u⟨ #„ ⟩

Γ ⊢  : ⟨ #„ ⟩→u  Γ ⊢ #   „arg : #„

Γ ⊢ appu  ⟨ #   „arg⟩ : 
Γ ⊢  : ×u⟨ #„ ⟩
Γ ⊢ projui  : 

Γ ⊢  : +u⟨ #„ ⟩ ... Γ, xi :  ⊢ i :  ...

Γ ⊢ matchu  ⟨... xi ↦→ i ...⟩ : 

Fig. 2. Typing rules for the web-annotated intermediate language

encode semantic constraints: at a call with identifier u, the invoked function must be a  with the
same identifier. Armed with these annotations, we can perform web-based transformations that
require transforming every element of a web.

In addition to functions, other types such as sums (e.g., datatypes) and products also have a notion
of a producer (introducer) and consumer (eliminator); just as there is “which functions are called
where,” there is the symmetric “which value construction can be destructed at which match,” and
“which tuple can flow to which projection.” Our intermediate language exposes webs for functions,
sums and products, and in Section 4, we describe symmetric transformations on all three of these.

Figure 1 contains the syntax of the web-annotated intermediate language. It contains variables,
base values, a (parallel) let-binding form, functions, calls, products, projections, tagged sums, and
matches (all -ary). Every producer and consumer for functions, products, and sums is annotated
with a web identifier. We use blue for terms, orange for types, and magenta for webs. Vector arrows
#„x indicate a (possibly empty) sequence. We index these with x and write them explicitly as ... x ...
or x1 ... x . Appending an element x or another sequence #„x ′ to #„x is written #„x · x or #„x · #„x ′. For
easier parsing, sequences in the syntax are wrapped in brackets ⟨ #„ ⟩.
Webs in the type system. As discussed in the introduction, this intermediate language is also typed,
which in the syntax manifests through type annotations on bindings. The type system for this
language is given in Figure 2. We write #„x : #„ to mean a sequence of zero or more variables followed
by a sequence of types with the same length, and Γ ⊢ #„ : #„ to mean the th expression has the th
type, and Γ, #„x : #„ to mean adding the th variable of the th type to the context.
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The type system is a simple extension of the simply-typed -calculus: every type constructor
(function arrow, product, sum) is also annotated with its web u, and the typing rules ensure that the
webs match between the terms and types. These typing rules ensures sound over-approximation of
the “which function is called where” semantic constraint: at an elimination (call) belonging to u,
the (function) value being consumed must be from a u-annotated producer ().

The key way to interpret the annotated types of this language are as distinct, but isomorphic copies
of the types they annotate. In other words, “⟨·⟩→ ·” and “⟨·⟩→ ·” are actually two different types.
The annotations serve to distinguish types that behave the same (e.g., all arrows behave the same)
from types that must be the same (due to typing constraints). With this intuition, transformations
can be interpreted as type-directed, and thus type-preserving: performing dead-parameter elimination
on a web u means that every function, call, and type annotated with u will be transformed.

Semantic correctness. Effectively, webs on types are carriers of proof that their value belongs to a
certain web, along with a promise that those values will only be used at the proper elimination
sites. Semantically, the webs on types mean that only values from the same web can flow to those
types, and thus to the correct elimination sites. In other words, we could write a semantics for
this language that tags all values with the web of their producer. Then as usual, the types in the
program describe the values that they represent: the web of the type matches that of the value.
With the interpretation that different annotations are actually distinct types, proofs of progress
and preservation are essentially copied from the simply-typed -calculus, with the corollary that
these webs are valid over-approximations of “which functions are called where.”

2.1 Web inference
In this section, we describe a lightweight inference procedure for determining the most general
(well-typed) web annotations that builds off of unification-based type inference procedures, injecting
the simply-typed -calculus into the annotated language. We begin by taking an unannotated
well-typed term and standard typing derivation. Each producer, consumer, and type former are
annotated with a fresh distinct web. Then, whenever the typing rules in Figure 2 constrain webs to
be the same, we will merge, or globally rename one into the other. These equality constraints can be
processed efficiently using union-find [12]. As this inference procedure only merges as necessary,
it produces the maximal number of well-typed webs.

Example. We begin with a program annotated with fresh webs, represented by OCaml comments.
let f: int ->(*u1*) int ->(*u2*) int = fun x ->(*u3*) fun y ->(*u4*) x + y in

let g: int ->(*u5*) int ->(*u6*) int = fun z ->(*u7*) fun w ->(*u8*) z - w in

let h: (int ->(*u9*) int ->(*u10*) int) ->(*u11*) int =

fun k ->(*u12*) ((k 1)(*u13*) 2)(*u14*) in

(h f)(*u15*) + (h g)(*u16*)

The constraints yielded by the typing rules are
u1=u3 u2=u4 (def. f) u5=u7 u6=u8 (def. g) u9=u13 u10=u14 u11=u12 (def. h)

u1=u9 u2=u10 u5=u9 u6=u10 u11=u15 u11=u16 (calls to h)
Solving these constraints (renaming larger into smaller) yields the resulting well-typed program

let f: int ->(*u1*) int ->(*u2*) int = fun x ->(*u1*) fun y ->(*u2*) x + y in

let g: int ->(*u1*) int ->(*u2*) int = fun z ->(*u1*) fun w ->(*u2*) z - w in

let h: (int ->(*u1*) int ->(*u2*) int) ->(*u11*) =

fun k ->(*u11*) ((k 1)(*u1*) 2)(*u2*) in

(h f)(*u11*) + (h g)(*u11*)

We extract the bipartite graph from this program, connecting functions and calls in the same web.
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u1 :
(fun x -> _) (fun z -> _)

(k 1)

u2 :
(fun y -> _) (fun w -> _)

(_ 2)

u11 :
(fun k -> _)

(h f) (h g)

Determining webs during type inference. Instead of a separate pass, we can perform web inference
during type inference by making the following small change to standard unification, where u is the
result of globally renaming one of u1 and u2 into the other (achieved via effects or monads).

unify (⟨11⟩→u1 12, ⟨21⟩→u2 22) = ⟨unify (11, 21)⟩→u unify (12, 22)
Separate compilation. Modules delineate compilation units and program boundaries. Often the
interface values used to interact across these boundaries cannot change: if an exported function is
ternary, it is expected to be ternary when imported. The web-annotated type system provides a
convenient description of the values that interact across these boundaries: those belonging to webs
visible on the boundary (types exposed as abstract types are invisible). For example, if the top-level
term is Γ ⊢  :  , then Γ contains all imports and  contains all exports. Web-based, or flow-directed,
transformations touch all members of webs, and thus are whole-term. These are not whole-program
(as MLton requires [10]) as they can be applied on a per-module basis by forbidding transformations
to members of boundary webs. In a more advanced setting, a compiler can communicate how
interfaces are changed across compilation units [15, 31].

Polymorphism and recursive types. This type system can be extended to polymorphism and (both
iso- and equi-) recursive types; the typing rules do not change, as the underlying type system has
only split type formers into distinct copies. The abbreviated typing rules are (using substitution):

Γ ⊢  : ∀.
Γ ⊢ tapp   ′ :  [ ′/]

Γ,  ⊢  : 
Γ ⊢ . : ∀.

Γ ⊢  :  [./]
Γ ⊢ roll  : .

Γ ⊢ unroll  : .
Γ ⊢  :  [./]

These rules essentially assert that certain portions of types (in particular, the  that appears
multiple times) are the same, which will be enforced during unification; in a type checker, when
the polymorphic type is applied, the substitution will be unified with the instantiated type of the
call, which will merge the webs appropriately. Recursive types are handled similarly; whenever
the isomorphism . =  [./] (where  is the recursive binder) is invoked (either explicitly
or implicitly), the webs in the various instances of  are merged. In fact, type abstraction and
instantiation and roll-unroll for isorecursive types are two more examples of producer-consumer
relationships, which could be web-annotated! In our prototype, we infer webs for well-typed terms
with polymorphism and equirecursive types through the same merging procedure.

Under the intuition that distinctly-annotated types and terms are just different copies of an
underlying language mechanism, existing type-soundness proofs for those underlying language
mechanisms should be able to be adapted to the web-annotated setting. Morally, polymorphism
should not interfere with transformations either; removing a dead parameter works whether or
not the type contains type variables. There are some cases where polymorphic terms can prevent
certain transformations, however, which we discuss at the end of Section 4.1.

Mutation. Functional languages such as Standard ML permit mutation through explicit types such
as ’a ref and ’a array, requiring that the types of the values stored in these cells does not change.
These are treated as any other type constructor: the types and syntactic forms for creating, mutating,
and accessing should also be given web annotations, which will be merged. The effect is that all
possible values that enter those mutable cells are treated as being in the same web; the analysis will
not distinguish different values based on where the cell is accessed. In this case, web-annotated
types provide a simple may-alias analysis as values belonging to distinct webs cannot be the same.
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3 Foundations of Web-Based Transformations
The point of exposing webs in the intermediate language is to enable flow-directed transformations.
These transformations require modifying all elements of web, meaning they are non-local and
whole-term. This section provides a foundation for how to formalize, describe, and understand
these transformations. As a concrete example, we develop a simple web-based dead-parameter
elimination (DPE), and in the following Section 4 we describe many more transformations.
To start, consider the following web-annotated program, which defines a function f that does

not use its second parameter y, is passed to g, and is only called at (h (arg, 2)):

let f = fun (x: int, y: int) ->(*u1*) x + 4 in

let g = fun (h: int * int ->(*u1*) int, arg: int) ->(*u2*) (h (arg, 2))(*u1*) in

(g (f, 3))(*u2*)

To perform DPE on f we first need to check a condition: does every function in f’s web u1 not use
its second parameter? To do this, we visit every location in the term, checking this condition upon
encountering any u1-annotated function. If the condition holds everywhere, then we transform by
revisiting every location, applying a rewrite rule that erases (1) the second parameter of every  in
u1, (2) the second argument from every call in u1, and to preserve well-typedness, (3) the second
argument from every u1 arrow. For the example, this transformation yields

let f = fun (x: int) ->(*u1*) x + 4 in

let g = fun (h: int ->(*u1*) int, arg: int) ->(*u2*) (h arg)(*u1*) in

(g (f, 3))(*u2*)

Notationally, we use inference rules to describe conditional transformations, as in Li and Appel
[24]. For DPE we have the following informal rule; formalizing it is the goal of this section:

∃ , for every  ⟨x1 x2 : 1 2⟩  in , x2 not free in 

apply the rewrite


 ⟨x1 x2 : 1 2⟩  ⇝  ⟨x1 : 1⟩ 
app  ⟨arg1 arg2⟩ ⇝ app  ⟨arg1⟩
⟨1 2⟩→ 3 ⇝ ⟨1⟩→ 3



everywhere in 

Let the top-level program term be  . This rule reads: if, for some fixed web  , all s in  and
belonging to  do not use their second parameter (the condition above the line), then for each ,
call, and arrow type within  and belonging to  , remove that dead parameter, the corresponding
argument, and argument type (the rewrite below the line).

Formalism. The intuitions of “evaluate a condition everywhere” and “apply a rewrite everywhere”
occur in all web-based transformations, and so our formalization of these ideas abstracts over a
condition C(·) and rewrite R(·). To formalize “evaluate a condition everywhere,” the left side of
Figure 3 defines two metafunctions,A andN .A() evaluates the condition C on every subterm and
type of  by (1) evaluating C(), and (2) using N() to apply A recursively (including to types). For
conciseness, these distribute over sequences. The condition results are combined with an operator
⊔, which has an identity ⊥ and where

 
#„·  folds ⊔ over sequences.

Often the condition C simply produces a boolean result, as in the DPE example, where ⊥ is
true and ⊔ is conjunction. More complicated rules require producing data structures, however. For
example, to apply DPE to all webs at once and remove multiple dead parameters, the condition
produces a map from webs u to sets of live indices (described in Section 4.1). In general, we have
found these structures to be (join) semilattices, and so use such notation.
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A(t) = C(t) ⊔N(t)
N(B) = ⊥
N(⟨ #„ ⟩→u ) =  A( #„ ) · A() 
N(×u⟨ #„ ⟩) =  A( #„ ) 
N(+u⟨ #„ ⟩) =  A( #„ ) 
N(x) = ⊥ N(b) = ⊥
N(let #„x : #„ = #„ in ) = A( #„ ) · A( #„ ) · A() 
N(u⟨ #„x : #„ ⟩ ) =  A( #„ ) · A() 
N(appu  ⟨ #   „arg⟩) =  A( ) · A( #   „arg) 
N(produ⟨ #„ ⟩) =  A( #„ ) 
N

projui 

= A()

N
inu

i 

= A()

N(matchu  ⟨... xi ↦→ i ...⟩) = A() · ... · A(i) · ...


T(t) = R(M(t))
M(B) = B
M(⟨ #„ ⟩→u ) = ⟨T( #„ ) ⟩→u T()
M(×u⟨ #„ ⟩) = ×u⟨T( #„ ) ⟩
M(+u⟨ #„ ⟩) = +u⟨T( #„ ) ⟩
M(x) = x M(b) = b
M(let #„x : #„ = #„ in ) =

let #„x : T( #„ ) =T( #„ ) inT()
M(u⟨ #„x : #„ ⟩ ) = u⟨ #„x : T( #„ )⟩ T()
M(appu  ⟨ #   „arg⟩) = appu T( ) ⟨T( #   „arg) ⟩
M(produ⟨ #„ ⟩) = produ⟨T( #„ ) ⟩
M

projui 

= projui T()

M
inu

i 

= inu

i T()
M(matchu  ⟨... xi ↦→ i ...⟩) =

matchu T() ⟨... xi ↦→T(i) ...⟩
Fig. 3. Condition (le) and transformation (right) metafunctions.

To formalize “apply a rewrite everywhere,” the right side of Figure 3 defines T and M. T()
applies the rewrite R to every subterm and type of  from the bottom up: M() first applies T
recursively and rebuilds the term, applying R afterwards.

The choices of C and R determine a transformation. For the DPE example, we have:

C ( ⟨x y⟩ ) = y not free in 
C (t) = ⊥, otherwise.

R ( ⟨x y⟩ ) =  ⟨x⟩ 
R


app  ⟨arg1 arg2⟩


= app  ⟨arg1⟩

R (⟨1 2⟩→ 3) = ⟨1⟩→ 3
R (t) = t, otherwise.

When applied to terms irrelevant to the transformation, C checks nothing and the rewrite R does
nothing. Using the formally-defined A and T , the inference-rule notation can be revised:

∃ ,A()   ⟨x y⟩  =⇒ y not free in 


 ⇝ T()


 ⟨x y⟩  ⇝  ⟨x⟩ 
app  ⟨arg1 arg2⟩ ⇝ app  ⟨arg1⟩
⟨1 2⟩→ 3 ⇝ ⟨1⟩→ 3




This reads: if A (with the C provided in braces) holds for  , then transform  via applying T (with
the rewrite rule R provided in braces). The “otherwise” clauses of the provided C and R are implicit.

Preserving well-typedness. To prove that the DPE transformation preserves the well-typedness of
the term, we can lift the transformation to contexts and judgements:

T() =  T(Γ, x : ) = T(Γ) , x : T() . T(Γ ⊢  : ) = T(Γ) ⊢ T() : T()
To show preservation of well-typedness, we construct the typing derivation for the transformed
term by induction, transforming each existing judgement.1 For example, the “irrelevant” cases of R
1Before doing this, we first need to also check C( ) for every judgement Γ ⊢  :  in the derivation and combine it into the
condition result. This is mostly a proof artifact that deals with implicit conditions about uniform arities for webs. If the
condition truly needs to inspect the types, such as looking at all arrows belonging to  , then this needs to be done in a real
implementation. Inspecting types on bindings is sufficient for internal representations that bind all intermediate values.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 177. Publication date: June 2025.



Webs and Flow-Directed Well-Typedness Preserving Program Transformations 177

just push T through every judgement, as with products in DPE:

Γ ⊢ #„ : #„
Γ ⊢ prod ⟨ #„ ⟩ : × ⟨ #„ ⟩ ⇝

T(Γ ⊢ #„ : #„ )
T 

Γ ⊢ prod ⟨ #„ ⟩ : × ⟨ #„ ⟩ =
T(Γ) ⊢ T( #„ ) : T( #„ )

T(Γ) ⊢ prod ⟨T( #„ ) ⟩ : × ⟨T( #„ ) ⟩ .

The interesting cases of R require more work. The  case for DPE (for the specific web  ) is

Γ, x1 x2 : 1 2 ⊢  : 
Γ ⊢  ⟨x1 x2 : 1 2⟩  : ⟨1 2⟩→ 

⇝
T(Γ) , x1 : T(1) ⊢ T() : T()

T(Γ) ⊢  ⟨x1 : T(1)⟩ T() : ⟨T(1) ⟩→ T()

When transforming this derivation step, we know that CDPE holds on the , so x2 is not free in  . Also,
the induction hypothesis applied to the premise tells us thatT(Γ) , x1 x2 : T(1) T(2) ⊢ T() : T().
To transform the conclusion judgement, we need to establish that (1) dead parameters can be
removed from the context of typing derivation, and (2) x2 not free in  implies x2 not free in T();
(1) is a transformation condition that states C provides the evidence required to apply R, and (2)
says that although we know C() prior to the transformation, when performing the transformation
we actually need to know C(M()), since the inner term has been transformed, in order to derive
T(Γ) ⊢ T() : T() fromM(Γ) ⊢ M() : M(). This manifests in general as a lemma that must be
proven, which takes the form:

∀, C(M()) ⊔ C() = C() , (equivalently C(M()) ⊑ C() in the underlying order) (1)

which means that the computed conditions are still valid. For DPE: dead variables are still dead.
For some rules this is a non-trivial lemma that needs to be proven inductively (e.g., DPE and

deadness). For other rules that are local and do not inspect far into nested subterms, it is fairly
trivial. (e.g., uncurrying in Section 4.1). We believe this lemma is necessary not just for proving
well-typedness, but also semantic correctness of these rules, which we leave to future work.

4 Web-Based Transformations
Armed with the formalism and notation introduced in the previous section, we can now describe
many examples of web-based transformations for the language described in Section 2, which serves
as a representative of intermediate languages in real compilers. Every rule preserves well-typedness
in the web-annotated type system, meaning crucially that (1) webs do not need to be reinferred after
transformation (reinference is discussed in Section 5.3) and (2) as erasing webs yields a well-typed
simply-typed  term, the transformations also preserve well-typedness in that underlying type
system. Note that in the untyped setting, the exact same transformations apply, just by erasing the
types; an aggressive optimizing compiler using a more precise control-flow analysis can apply the
same rules.

First, we present generalizations of common existing transformations in compilers: contractive
transformations like DPE, and uncurrying (Section 4.1). These transformations are strictly more
general (can be applied more often) than their syntactic first-order counterparts. Following, we
describe how webs provide a notion of “semantic locality,” connecting producers directly to con-
sumers, which allows computations to be moved between them (Section 4.2). Finally, we describe
specialization via web splitting, which is similar to defunctionalization (Section 4.3).

These rules roughly fall into three categories: change of interface (changes to calling convention;
e.g., how many arguments, what type of arguments, etc.), computation movement (inlining, constant
propagation, etc.), and web manipulation (defunctionalization, monomorphization, etc.). Appendix A
contains paper proofs that these rules preserve well-typedness, as well as additional transformations.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 177. Publication date: June 2025.



177 Benjamin iring, David Van Horn, John Reppy, and Olin Shivers

4.1 Generalizing transformations
Dead elimination. The following generalizes the earlier DPE, removing dead parameters in all webs.

 = A()  u⟨ #„x : #„ ⟩  =⇒ [u ↦→ { such that xi free in }]

 ⇝ T()


u⟨ #„x : #„ ⟩  ⇝ u⟨flt((u), #„x ) : flt((u), #„ )⟩ 
appu  ⟨ #   „arg⟩ ⇝ appu  ⟨flt((u), #   „arg)⟩
⟨ #„ ⟩→u res ⇝ ⟨flt((u), #„ )⟩→u res




Instead of computing a boolean result, the condition computes a map  from webs to the indices
that are live for that web. It does this by finding the indices of the parameters that are live for each
 in any web. Then, these are all combined with ⊔, which distributes across the map and unions
sets of live indices: a web’s th parameter is live if some  in that web uses its th parameter.

(1 ⊔2) (u) = 1 (u) ⊔2 (u) = 1 (u) ∪2 (u)
The transformation uses  and a “filter” helper function flt(I, #„· ), which keeps the th element if
 ∈ I, to remove the dead parameters and corresponding arguments and types. Note that despite
processing all webs, this rule is not a fixpoint: deleting arguments can reveal new dead parameters.

Aside from functions, products and sums also have a symmetric “dead elimination” rule: delete
components that are never projected, or never introduced, respectively. Symmetry is a common
theme for webs: transformations for one kind of web often have symmetric versions.

 = A()  projui  =⇒ [u ↦→ {i}]

 ⇝ T()


produ⟨ #„ ⟩ ⇝ produ⟨flt((u), #„ )⟩
projui  ⇝ projushif ((u),i) 
×u⟨ #„ ⟩ ⇝ ×u⟨flt((u), #„ )⟩




 = A()  inui  =⇒ [u ↦→ {i}]

 ⇝ T()


inui  ⇝ inushif ((u),i) 

matchu 

#„

cls

⇝ matchu 


flt((u), #„cls)


+u⟨ #„ ⟩ ⇝ +u⟨flt((u), #„ )⟩




As before, the conditions find the live indices. The transformation uses another helper shif (I, ),
which decrements  by |{  |  < ,  ∉ I}|, to appropriately shift projections and sum intros.

Additional web-based contractive transformations, provided in Appendix A, include: dead-
parameter elimination in matches (rewriting the sum to package a unit value), rewriting webs
that have no eliminations to the unit type, flattening unary sums and products, and eliminating
unit-typed parameters from functions and unit-typed components from tuples.

Uncurrying. Uncurrying merges nested s and nested calls (the function of one is the result of the
other). With the web perspective, we can easily uncurry functions that escape into data structures
or are used as higher-order arguments. What we want the rule to be is: if it is the case that the
s in u always consists of a nested , and the calls in u are always wrapped in an outer call, then
merge the s and calls together. Unfortunately, testing if a call is always wrapped in another is
difficult using the condition combinator because it needs additional information about the context.
Interestingly, an ANF or CPS representation does not require additional context information or
secondary simplifications because it allows looking into the rest of the term to see adjacent calls
since the computation has been linearized.

Even without a generalization to the meta-theory, we can still perform uncurrying by merging
adjacent s and wrapping each call in u in a new curried , effectively shifting the currying from
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the source of the function to where it is called, which then gets -reduced:

 = A()  u⟨ #„x : #„ ⟩  =⇒ [u ↦→ u′ if  has the form u′ ⟨ #„y : #„ ′⟩ ′, else fail]
 ⇝ T() R ◦ Runcurry


where

Runcurry =



u⟨ #„x : #„ ⟩ u′ ⟨ #„y : #„ ′⟩  ′ ⇝ u⟨ #„x · #„y : #„ · #„ ′⟩  ′ when (u) = u′

appu  ⟨ #   „arg⟩ ⇝ u′ ⟨ #„y : #„ ′⟩ appu  ⟨ #   „arg · #„y ⟩ when (u) = u′

⟨ #„ ⟩→u ⟨ #„ ′⟩→u′ res ⇝ ⟨ #„ · #„ ′⟩→u res when (u) = u′




R =

appu′ u′ ⟨ #„y : #„ ′⟩ appu  ⟨ #   „arg · #„y ⟩ ⟨ #   „arg′⟩ ⇝ appu  ⟨ #   „arg · #   „arg′⟩

The condition computes, for each web, whether the body of the  is always another . If so, it
provides that ’s web, otherwise “fail.” The join is defined as:

(1 ⊔2) (u) = 1 (u) ⊔2 (u) u ⊔ u = u u ⊔ u′ = fail _ ⊔ fail = fail = fail ⊔ _

Then, Runcurry merges nested s (for which (u) is not fail) and introduces currying at the calls.
This is followed up by R , which performs -reduction (in particular, to the newly introduced s).

This trick is similar to that in Appel [4], which introduces a wrapper function containing the
curried behavior that calls a fully-applied uncurried version. This wrapper is then inlined and
simplified away (via R ), eliminating the currying. Or, it is passed to a higher-order function
which is then specialized via inlining, effectively propagating the change until it gets to a call (we
contrast with this style in the related work). Instead, our rule immediately introduces the currying
at the calls, then relying on the simplifier in the same way. This rule simultaneously highlights
two important parts of web-based transformations: (1) behaviors can be moved directly from the
producer to the consumer, which is the computation movement rule that we describe next, and (2)
simplifying passes can be fused together with the transformations (further discussion in Section 5).

There are symmetric rules for products and sums that merge nested structures into outer ones.
Products have the same issue as functions: the adjacent projection happens on the outside. We can
play the same trick as with functions to resolve this, rewriting the inner projections to create a
new tuple that would get eliminated by a secondary pass. Appendix A contains these rules.

Polymorphism. Promising to maintain a well-typed representation can block certain semantics-
preserving transformations, like the dead-parameter elimination example from the introduction, be-
cause they cannot preserve the types. Polymorphic terms themselves can also block transformations:
suppose we had a polymorphic function fun (f: ’a ->(*u1*) ’b) (x: ’a) ->(*u2*) (f x)(*u1*).
It may be the case that every function value provided to f is a closure over a curried function like
fun _ ->(*u1*) fun _ ->(*u3*) e. The polymorphism in the term blocks the uncurrying transfor-
mation, because the nested arrow is not available; how would one transform the type of f? We
believe this issue cannot occur in the simply-typed -calculus. In the polymorphic setting, the
condition needs to additionally inspect the type, to ensure that the transformation to the type is
possible. This check is not required for DPE, as it does not look at nested shapes of types. Uncurrying
does requires this check as it needs types to have a certain shape. To overcome this limitation on
transformation, one can partially specialize the “most general unifier” that Hindley-Milner type
inference provided; if it is always given a curried function, transform the type to reflect that.

4.2 Semantic locality and movement of computation
DPE and uncurrying change the interface of webs and they can be decomposed into two pieces:
identifying some local transform around a function, which manifests as a wrapper around the
function, and moving that wrapper from the producer directly to the consumer. We call this direct
connection semantic locality. Compilers typically restrict themselves to transformations that are
syntactically local (adjacent in the syntax, connecting definition of syntax to use) or lexically local
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(connecting definitions of variables to their uses). Just as a compiler performs simplification steps
(syntactic locality: -simplification) or moves computations from definitions to uses (lexical locality:
substitution), a compiler can also simplify and move computations directly between producers and
consumers (semantic locality). For example, consider the following transforms:

let f(x: int) = 2*(x+1) in

f (... - 1)
⇝

let f(x: int) = 2*x in

f ((... - 1) + 1)
⇝

let f(x: int) = 2*x in

f ...

The function f always adds one to its parameter before using it, and whenever f is called, it subtracts
one from the argument. The transform moves the +1 to the call, which is then canceled out.

Notation. A one-hole context E is an expression containing a hole□ that can be filled by an expression:
EJK. Every subterm of an expression can be uniquely identified as a context focusing on the subterm.
We write substitution as ′ [ #„ / #„x ], which substitutes all occurrences of x in ′ with  .

Inner computation movement. The general pattern is that computations that only rely on the input
parameters can be moved to the call. For function webs, the first rule for moving computation is:

∃ ′, ′ does not reference  , has free variables #„y : #„ with #„y : #„ ⊢ ′ :  ′,
and A()   ⟨ #„x : #„ ⟩  =⇒ ∃E,  = EJ′ [ #„x / #„y ]K

 ⇝ T()


 ⟨ #„x : #„ ⟩ EJ′ [ #„x / #„y ]K ⇝  ⟨ #„x · x′ : #„ ·  ′⟩ EJx′K
app  ⟨ #   „arg⟩ ⇝ app  ⟨ #   „arg · (′ [ #   „arg/ #„y ]) ⟩
⟨ #„ ⟩→ res ⇝ ⟨ #„ ·  ′⟩→ res




First, the condition: ′ is a “pattern” that should appear in every  in  . For this rule, each ’s body
is decomposed into an outer one-hole context E, focused on the shared ′, which instantiates its
“pattern variables” #„y with the ’s parameters. The pattern ′ is only allowed to depend on the
parameters of the s because when we move ′ to the call we have the arguments available. To
allow ′ additionally to refer to free variables of the s, we would need to ensure that not only are
those free variables available at the calls, but that at run time those are the same instances.
If there is such a pattern, we can lift it outside the call, introducing a new parameter x′ corre-

sponding to the evaluation of the focused ′ [ #   „arg/ #„y ], which has the same evaluation as ′ [ #„x / #„y ].
Effectively, the computation of ′ has been lifted from the definition to outside the call. We term
this inner computation movement because the shared computation is the inner ′. Additionally, ′
cannot reference  , as this web is being transformed.

Note that this rule can be applied in reverse: if one argument can always be rewritten as a fixed
function of the others, it can be substituted into the body of the functions in the web. In this case,
the conditions are on the calls rather than the s. The forward direction most often applies when
there is exactly one  in the web, and the reverse direction most often applies when there is exactly
one call. Finally, this rule can be appropriately defined for products and sums.

This transformation is not always semantics preserving, as it forces the evaluation of a computa-
tion, which may not terminate, that may never have been computed in the first place. For example,
′ could be nested in a  or under a match branch never taken. For effectful programs, the argument
values should first be let-bound to avoid duplication and changing the order of computation. The
generality of this rule is a novel application of webs and web-based transformation, and is a general
schematic to categorize various transformations.

For polymorphism, types are scoped andmoving  ′ from the function to the body is not necessarily
well-typed; additional restrictions are required. Contractive transformations usually do not need
such restrictions because they do not move types, instead just shuffling what is already available.
For example, our uncurrying rule seems to implicitly move parameter types from the function to
the call, but those types are available from the call’s return type.
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Constant propagation. One example of this transformation in reverse is constant propagation, where
functions that are always given a constant argument propagate that constant into the function:

∃ c  ′, such that  ⊢ c :  ′ and A()  app  ⟨ #   „arg · arg⟩ =⇒ arg = c


 ⇝ T()


 ⟨ #„x · x′ : #„ ·  ′⟩  ⇝  ⟨ #„x : #„ ⟩ let x′ :  ′ = c in 
app  ⟨ #   „arg · c⟩ ⇝ app  ⟨ #   „arg⟩
⟨ #„ ·  ′⟩→ res ⇝ ⟨ #„ ⟩→ res




There are symmetric rules for products and sums, and for when a function returns a constant.

Inlining. In fact, returning a constant is a special case of inlining. Inlining is allowed when the
entire function body is the shared pattern, which typically only occurs for webs with exactly one .

∃ ′, ′ has free variables #„y : #„ and A()   ⟨ #„x : #„ ⟩  =⇒  = ′ [ #„x / #„y ]

 ⇝ T()


 ⟨ #„x : #„ ⟩  ′ [ #„x / #„y ] ⇝ ()
app  ⟨ #   „arg⟩ ⇝ let #„y : #„ = #   „arg in ′

⟨ #„ ⟩→ res ⇝ 1




When we inline, the function is not used anymore, since all of its calls have been transformed,
so we turn it into the unit value (), and its type into the unit type 1. To simulate inlining using
simpler rules, first the code movement rule is applied, transforming each  to have a new parameter
(for the computation of the old body) and a new body that immediately returns that new parameter.
Applying dead-parameter elimination then rewrites the s to the identity function. Finally, we
apply a special rule that eliminates webs that apply identity function, which introduces the units.

Outer computation movement. The second code movement rule, outer computation movement,
instead has the context E as the shared pattern, which is then moved out to the call:

∃ E  ′ res, E does not reference  , has free variables #„y : #„ , and binds #„z : #„ ′′,
if Γ, #„x : #„ , #„z : #„ ′′ ⊢ ′ :  ′then Γ, #„x : #„ ⊢ E[ #„x / #„y ]J′K : res


, and

A()   ⟨ #„x : #„ ⟩  =⇒  = E[ #„x / #„y ]J′K and #„x : #„ , #„z : #„ ′′ ⊢ ′ :  ′

 ⇝ T()


 ⟨ #„x : #„ ⟩ E[ #„x / #„y ]J′K ⇝  ⟨ #„x · #„z : #„ · #„ ′′⟩  ′
app  ⟨ #   „arg⟩ ⇝ (E[ #   „arg/ #„y ]) Japp  ⟨ #   „arg · #„z ⟩K
⟨ #„ ⟩→ res ⇝ ⟨ #„ ⟩→  ′




Clearly, this rule is complicated. First, the shared E can only refer to the free variables of the s, just
like the shared ′ for inner computation movement, but it also might bind variables #„z . These bound
variables do not need to be the same between all s, but that would only serve to complicate the
rule further. The second line of the condition states that filling in the context with an appropriate
expression yields a well-typed result, and the condition for each  on the third line states that
E is shared and that the expression it focuses on is suitably appropriate. Additionally, this rule
needs to ensure that the remaining part of the bodies of the functions in the web ′ all have the
same type  ′, so that the function type can be appropriately patched after transformation. With
additional formalism to access the typing contexts, ′ can be made to depend on other free variables
that are in-scope. When performing the transformation over the typing derivation, however, this
information is available. In the untyped setting, none of these concerns arise.

As with inner computation movement, this rule is a schematic for other transformations, is not
necessarily semantics preserving, can be applied in reverse, and has versions for products and sums.
For example, both DPE and uncurrying can be framed through this schematic as a rule that (1) first
create a wrapper function with some behavior (removing a parameter or uncurrying), which is
then moved to the call (and simplified). This closely mimics traditional rewriting techniques, which
we compare with in the related work, but relies on semantic locality instead than inlining.
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Argument flaening. Argument flattening (syn. arity raising [8]), spreads tupled arguments across
multiple parameters. When the tuple is always projected at the beginning of the function (and then
is not used after), the projections can be moved from the s to the calls.

A()


 ⟨ #„x · x : #„ · × ⟨ #„ ′⟩⟩  =⇒  = let #„y : #„ ′ = ... proji x ... in ′,

and x not free in ′

app  ⟨ #   „arg · arg⟩ =⇒ arg = prod ⟨ #   „arg′⟩




 ⇝ T()




 ⟨ #„x · x : #„ · × ⟨ #„ ′⟩⟩
let #„y : #„ ′ = ... proji x ... in ′

⇝  ⟨ #„x · #„y : #„ · #„ ′⟩ ′

app  ⟨ #   „arg · arg⟩ ⇝ let #„y : #„ ′ = ... proji arg ... in
app  ⟨ #   „arg · #„y ⟩

⟨ #„ · × ⟨ #„ ′⟩⟩→ res ⇝ ⟨ #„ · #„ ′⟩→ res




Composing a simplification rewrite can eliminate the projections when the tuple is known (like
-reduction for uncurrying). Finally, outer computation movement is good for other kinds of
specialization. For example, when the context E packages ′ into a specific sum constructor, and
surrounding the call is always match, then the constructor can be moved to the call and eliminated.
We are confident that this is list is incomplete; thinking in terms of semantic locality provides

the ability to generalize many other existing transformations, and perhaps create new ones too.

4.3 Web-spliing and specialization
What happens when we want to apply a transformation like DPE, but the condition does not hold
for a single member of a web? It would be nice to “split” that member off into its own web, so that
we can apply the transformation to the rest. What we are really asking for is the ability to specialize
a web. Traditional rewriting systems rely primarily on inlining, which specializes by duplicating
entire function bodies: before inlining, the function call contains typing constraints, which may
e.g., constrain the function’s arguments to be in the same web, but after, the calls are -reduced
and the constraints disappear, having the effect of “splitting” the web.

Compilers that have access to webs have another option: defunctionalization. Defunctionalization
first closure-converts and -lifts a program, and afterwards assigns a unique sum tag to every .
When constructing a closure, the tag is packaged instead of the code pointer. Then, each call is
transformed into a case over the packaged tag; in each branch, the  corresponding to the tag for
that branch is called. Defunctionalization allows every call to know exactly which  it invokes.
In terms of webs, defunctionalization’s key property is “splitting” the web into multiple webs,

one for each . By necessity, this duplicates calls (whereas inlining duplicates entire definitions).

a b

call 1 call 2
⇝

a b

call 1a call 2a call 1b call 2b

The utility of this transformation is the ability to specialize the eliminators for each of the introducers.
We therefore term this transform introduction web-splitting. After defunctionalization, every call
knows exactly which  it is calling, and so can specialize as much as desired. Defunctionalization is a
proven application of webs: the MLton compiler [10] monomorphizes and defunctionalizes early on,
making optimization and specialization easier in downstream passes, with the limitation of being
whole-program. This limitation is not foundational: defunctionalization can be applied on a per-
module basis, as long as either (1) webs that interact with unknown code are not defunctionalized
or (2) the interaction with unknown code is wrapped appropriately.
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Introduction web-splitting is useful when only some s exhibit optimizable behavior, as in the
following. The left constrains three functions f1, f2, and f3 together, and the first two have a dead
second parameter. Introduction web-splitting splits this web using a sum type t with constructors
A and B. Assigning A to f1 and f2 and B to f3 permits applying DPE on every function in A, because
the type system treats the arrow in A as distinct from (i.e., unconstrained with) the arrow in B.

let f1 = fun (x1,y1) -> x1 in

let f2 = fun (x2,y2) -> 2*x2 in

let f3 = fun (x3,y3) -> x3+y3 in

let g = fun h ->

h(1,2) in

(g f1) + (g f2) + (g f3)

⇝

type t = A of (int -> int) | B of (int*int -> int)

let f1 = A (fun x1 -> x1) in

let f2 = A (fun x2 -> 2*x2) in

let f3 = B (fun (x3,y3) -> x3+y3) in

let g = fun h -> match h with

| A h1 => h1(1)

| B h2 => h2(1,2) in

(g f1) + (g f2) + (g f3)

Our transformation for introduction web-splitting focuses only on the tagging, and does not do
closure conversion and  lifting, as the tagging is what actually splits the web.

the producers, consumers, and types in the web u are {introu } , {elimu
 J  K}  , and {u }

 ⇝ T()


introu ⇝ inu′

I( ) intro
uI( )


elimu
 J  K ⇝ matchu′  


... x ↦→ elimu

 JxK ...


u ⇝ +u′ ⟨... u


...⟩




We parameterize this transformation over a function I : N → N, which maps the indexing set of
introducers  to indexes of the new sum  . The map I is not required to be injective; two producers
use the same constructor like in the example above, allowing for partial defunctionalization in the
sense that webs are not completely split. The transform splits u into a collection of webs u (the old
u does not appear in the transformed program), and uses another u′ for the new sum. Each introu
in u is wrapped in a sum constructor and changes its web to uI( ) .

Each consumer elimu
 J  K is a one-hole context focused at the eliminated value, and is transformed

into a match containing duplicated copies of the elimination forms that use the new split webs.
Each type transforms into a sum of the same duplicated type, each which use the new webs.

The dual of defunctionalization. Introduction web-splitting allows the consumers (calls) to specialize
based on the producers (s). The dual flips the order: it specializes the producers (s) based on the
consumers (calls). The effect is that the producers are duplicated for each consumer,

a b

call 1 call 2
⇝

1a 1b 2a 2b

call 1 call 2

and so we term this elimination web-splitting. Elimination web-splitting is achieved by duplicating
the producers and packaging them into a product, with one index for each call; each call then
selects the appropriate index. The rewrite rule for elimination web-splitting is

the intros, elims, and types in the web u are {introu } , {elimu
 J  K}  and {u }

 ⇝ T()


introu ⇝ produ

′ ⟨... introu ...⟩
elimu

 J  K ⇝ elimu
 Jproju

′
E(  )   K

u ⇝ ×u′ ⟨... u


...⟩
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Just as with introduction web-splitting, we allow for partial web-splitting that groups multiple
consumers together by using a (non-injective) function E : N → N mapping from the index set of
eliminations  into the product’s index set  . As before, this rule introduces new webs u′ and u .
Elimination web-splitting for s fundamentally involves duplicating the  terms of the web.

This transformation may be worth applying if the s can be appropriately specialized to the calls.
Monomorphization is one example of this transformation as it duplicates function definitions.
Another example is where one call in the web provides some constant argument (like a  term),
and propagating that constant into the function body allows the large amounts of simplifications.
Splitting webs to get exactly one consumer is not always possible. For example, elimination

web-splitting on recursive functions introduces new calls when the function definition is duplicated:

let fact n =

if n=0 then 1 else n*fact(n-1) in

fact(10)

⇝
let fact2 n = if n=0 then 1 else n*fact2(n-1) in

let fact1 n = if n=0 then 1 else n*fact2(n-1) in

fact1(10)

The function fact is duplicated, using fact1 for the entry and fact2 for the recursive call, but
duplication causes a second call to fact2. Effectively, the loop has been unrolled by one iteration.

Complete web-spliing. Introduction web-splitting followed by elimination web-splitting provides
a datatype-like structure of sums of products where producers are one-to-one with consumers.

5 Implementation Strategies
A naïve implementation of these transformations would repeatedly traverse the term, leading to
high compile-time costs. This section discusses several implementation strategies to address this.

5.1 AST representation
Although it is uncommon for functional languages, some prior work [7, 41] have made use of
mutable graph representations for ASTs to enable efficient transformations. In these representations,
each node is a pointer, and the contents of that pointer can be updated. In particular, Benton et al.
[7] use such a representation with an external map associating variable definition sites to variable
uses, to quickly jump between them. We can generalize this to track and maintain maps from web
identifiers to their members, which enables processing each web individually by indexing into the
term, instead of traversing the whole term and modifying all webs.

5.2 Composition by fusion
Graph representations have their own complexities, so alternatively: transformations should be
able to process many webs at once, as in Section 4.1, and also fused together to avoid multiple
passes over the AST. While we leave much of this topic to future work, consider an example: instead
of doing DPE followed by eliminating dead components in products (DPrE), we did both in one
pass. This pass would compute both dead parameters and dead components, and then rewrite both
of these away in a single transformation pass. We could also throw in extra simplifications like
-reduction on the way back up, like uncurrying in Section 4.1, or extend the meta-theory to also
compute information like variable counts on the way back up for normal dead-variable elimination.
Note that such a fused pass is not equivalent to performing DPE on the whole term, followed by
DPrE on the whole term: DPE could eliminate dead arguments, which could eliminate projections
nested in the arguments, uncovering more dead behavior for DPrE that was not exposed before.

To fuse two rules with (C1, R1) and (C2, R2), we first compute both C in one traversal with

{A() C1} ⊗ {A() C2} = A() {C1 ⊗ C2}
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where ⊗ on elements constructs a pair and ⊗ on conditions distributes to the results:
ℓ1 ⊗ ℓ2 = ⟨ℓ1, ℓ2⟩

C1 ⊗ C2
 (·) = C1 (·) ⊗ C2 (·) .

Then, the two rewrites R1 and R2 consume the results of these conditions. Applying the compo-
sition R2 ◦ R1 is valid when the correctness lemma holds (Equation 1 from Section 3), which now
manifests as two lemmas; one for R1 operating on M() and one for the subsequent R2:

∀, C1 (M()) ⊔ C1 () = C1 () and ∀, C2 (R1 (M())) ⊔ C2 () = C2 () .
For example, (1) DPrE’s condition of deadness will still hold, even if parameters are eliminated by
DPE as both are contractive transforms, (2) Performing DPE following by uncurrying is sound,
because the uncurrying condition (s are nested) will hold even if parameters are deleted. On the
other hand, (3) uncurrying followed by DPE does not fuse, because the live index set computed by
DPE is invalidated after adding the new parameters: the new parameters are live and need to be
included. If DPE instead computed sets of dead indices then it fuses, since every “original” dead
parameter is still dead after uncurrying. We believe that many of the web-generalized rules (e.g.,
contractive transformations) can be fused in this way, and many local simplification rules (like
-reduction) can be included as well, but leave further exploration to future work.

5.3 Web reinference
Our web-based transformations maintain well-typedness in the annotated type system, meaning
webs do not necessarily need to be reinferred after transformations. On the other hand, as transfor-
mations can delete constraints that merge webs during inference, reinferring post-transformation
may yield more precise webs. Instead of resolving equality constraints at inference time, we could
instead maintain a graph on web identifiers with the constraints as edges. When transforming, we
could dynamically maintain this graph and its connectivity properties [22]: deleting a term requires
traversing it, collecting the constraints it contributes, and removing them from the graph. This
is an instance of program analysis that is incremental in program edits (Stein et al. [43] tackle a
similar problem for online static analysis), and we leave further exploration of this to future work.

6 Evaluation
Let us rewind. Our type-based web inference is intentionally less precise than existing control-
flow analyses, because it is intended to be a lightweight and easy-to-implement analysis, that is
congruent with types. But how much coarser is it — how much precision do we give up in order
to preserve types? We implemented our type system in the 3CPS Standard ML compiler [32] and
compared the results to the existing control-flow analysis (CFA) within, which is a significantly
engineered more-precise 0-CFA that tracks extra flow properties to cut spurious paths. [34]

To visualize the webs of programs, we produce diagrams like the following:

# calls
Syntactic analysis Type analysis
0 1 2 3 4 9 1 2 3 4 5 9

0 15
# s 1 16 3 9 5 1 1 1 9 5 1 1

3 1 2 1
6 1

This diagram contains descriptions of both the syntactic and our typed-based  webs. The entry of
a table at row  / column  counts the number of webs that have  s and  calls, similar to a heat
map. Syntactic webs are partitioned into two categories: unknown on the left and known on the
right; “unknown” means that the syntactic analysis gives up on understanding the web because
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its members deal with higher-order behavior. For example, there are fifteen calls to higher-order
functions, sixteen s that have zero syntactic calls and are also unknown, three s that are used
once syntactically and are also unknown, and nine s that are known and have exactly two calls.
Syntactic webs will always have at most one . The unknown table of our type-based analysis is
empty because no webs are unknown. It finds two webs that have three s and four calls. Our
benchmarks are closed programs; which means that almost all webs are possible to know. The one
rare edge case is when a value is packaged into an exception, raised, and then not caught; such a
value “escapes” from its compilation context, effectively making its web impossible to know, just
like values exposed in separate compilation. Our implementation2 exposes exception types and
exception continuations, and web inference is applied to these, so these edge cases are able to be
identified easily. Our supplement we provide a diagram for each kind of web: s, continuations,
products, and datatypes. For continuations, the syntactic analysis only identifies join points, and it
gives up entirely for products and datatypes as known behavior for these is simplified away.

We found some interesting patterns in our diagrams. For datatypes, we noticed that webs with
exactly one match were common, and for tuples, we noticed that webs with exactly two projections
were common: pairs project out both components. Both of these are many-producer one-consumer
relationships. Continuation webs were often the other way around: many calls for raising exceptions,
all processed by single handler. Our web-based DPE also easily identifies functions that do not
raise exceptions, because the handler is eliminated. Our web-based arity-raising and contraction
also eliminated a significant number of the tuple webs. In Standard ML tuples are the standard way
to pass multiple arguments, so it is expected that there are many tuple webs are only used to wrap
multiple arguments; the syntactic analysis does not find these, but webs find them easily.
To compare the type- and CFA-based analyses, we first note that webs are a partial order: the

least-precise webs have one web containing everything, while more precise webs have more disjoint
sets. Two sets of webs are comparable if there exists a sequence of unions to turn one into the other.
Numerically, we count the number of union operations it would take to get from the more-precise
to the less-precise. As each union operation subtracts one from the number of webs, this count
is just the difference between the number of webs. On our benchmarks, the compiler’s CFA is at
least as precise as the type webs, and the syntactic analysis is always less precise than both. With
polymorphism, our type-based analysis can theoretically outperform the CFA (Section 6.1).

We summarize our findings for  webs in Table 1 (summary tables for other webs and post-web-
based-contraction are available in Appendix B.2). In our experiments, the type-based  webs and
the CFA  webs were almost exactly the same. The disparity between these analyses across all
kinds of webs is in part due to the CFA pruning certain execution paths, leading to it finding dead
functions and calls. Performing web-based contractive passes eliminates many disparities.

The CFAwe compare against has been significantly engineered to be very fast and precise, domain-
specific fixpoint and precision strategies that makes the analysis faster by lowering precision where
it is not needed and increases precision elsewhere. Our type-based analysis has not been tuned at
all, and yields comparable results while often running faster than the CFA. That being said, both
are on the order of milliseconds and only contribute a small amount to the compile-time.

We also provide a theoretical upper bound on analysis precision, by means of an instrumented
interpreter gathering the unsound webs of a single trace (e.g., running the algorithm on a single

2The internal representation of 3CPS is a hybrid ANF/CPS; continuations are used for function return, exceptions, and
join points. Continuations have a distinct type former ’a cont indicating a continuation that accepts an ’a. Before flow
analysis and web inference, it performs simplification passes, such as inlining of known functions used exactly once, and
uncurrying and contractive passes on known functions and data structures. 3CPS is a prototype without a competitive
backend, so we leave studying how much our generalized web-based transformations improve performance to future work;
existing results for defunctionalization and flow-directed transformations provide sufficient motivation.
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Table 1. Summary of syntactic analysis, type analysis, and CFA results. Column (1) contains the benchmark.
Column (2) has the total number of s and calls in the program, (3) has the number of known syntactic
webs, and (4) has the total number of s and calls that belong to unknown webs — the analyses sort these
into known webs. Column (4) provides a measure of how “higher-order” a benchmark is: more unknown,
more higher-order. Columns (5) and (6) have the number of webs from the CFA and our type-based analysis,
respectively, and (7) has the difference between these. The unknown elements are oen sorted into only a
few webs. Column (8) describes a theoretical bound on the number of webs based on the results of running
an instrumented interpreter on a single trace. The second number in parentheses in this column describes
the number of “dead” elements, or s and calls that were never explored during the trace. Columns (9) and
(10) have the CFA time and our web-inference time, respectively, and Column (11) provides the speedup.
Descriptions of our benchmarks are available in Appendix B.1.

File Total Syn. Unkn. CFA Types Δ Interp CFA (ms) Infer (ms) Speedup

nucleic 135+211 101 34+11 107 107 0 108(1) 62.9 10.9 5.8x
mc-ray 73+139 58 15+9 67 67 0 70(3) 4.0 0.6 6.4x
boyer 30+178 22 8+10 25 25 0 48(25) 63.4 26.6 2.4x
k-cfa 115+231 90 25+36 110 109 -1 157(53) 19.2 9.2 2.1x
ratio-regions 109+364 74 35+11 83 83 0 90(7) 17.1 3.0 5.7x
knuth-bendix 135+268 91 44+36 118 113 -5 137(27) 21.3 6.4 3.4x
raytracer 50+138 46 4+4 49 49 0 61(13) 6.1 1.7 3.5x
s-n-f 46+94 37 9+20 42 42 0 52(10) 5.1 0.5 11.1x
cps-convert 35+64 25 10+7 28 28 0 31(1) 4.9 2.1 2.3x
json-decode 43+47 18 25+13 26 26 0 28(2) 6.2 2.0 3.1x
interpreter 18+44 14 4+2 16 16 0 20(5) 4.1 2.4 1.7x
parser-comb 84+111 26 58+42 39 39 0 42(3) 9.0 2.1 4.3x
twenty-four 49+77 28 21+20 36 36 0 42(2) 5.8 0.6 9.5x
streams 28+33 9 19+22 25 25 0 28(3) 0.9 0.4 2.1x
tardis 55+54 17 38+22 29 29 0 30(1) 4.1 0.8 5.0x
derivative 19+40 13 6+8 17 16 -1 18(2) 6.1 1.3 4.6x
life 55+81 28 27+21 41 41 0 42(1) 7.6 1.5 5.1x
safe-for-space 7+7 4 3+1 7 7 0 8(3) 0.2 0.1 2.2x
cpstak 6+7 2 4+1 3 3 0 4(1) 0.5 0.0 36.9x
y-fact 6+8 3 3+3 6 6 0 7(1) 0.1 0.0 3.4x

example). Due to the single-trace behavior, many s are dead; based on our manual inspection,
dead elements almost always belong to already-known webs. For an entry  ( ), if every  is
possible to invoke in some trace, then  −  is an upper-bound on the maximum number of sound
webs possible, since one merge per element in  yields  −  webs. In k-cfa, knuth-bendix,
derivative, and safe-for-space, the flow analysis found one, eight, one, and two dead elements,
respectively, with all other programs having zero. After factoring these out, this upper-bound  −
being exactly or very close to the CFA results indicates that it, and thus the type-based analysis,
is very precise. Because of this, we did not find much benefit to increasing the precision of the
analysis using a more precise allocator, such as in Gilray et al. [18].
After CPS conversion, our implementation begins by annotating every location in every type

with a fresh web identifier. Additionally, it introduces a fresh datatype definition everywhere that
references a datatype, meaning there will be e.g., many copies of the list datatype, each used in only
one location. This corresponds to annotating inline recursive types with fresh web identifiers. Then,
it invokes the type-checker, which has two modes: one to check that webs and datatypes are the
same, which corresponds to checking the typing rules in Figure 2, and one to record every time the
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type checker wants two webs or two datatypes to be equal. Web inferences uses this second mode
to collect all of the web and datatype constraints. Afterwards, datatypes that are required to be the
same are merged together using union-find. This induces further web and datatype constraints, as
merging two datatypes requires merging the constructors, which corresponds to unifying two inline
recursive types. We process datatype constraints to a fixpoint, and then perform union-find on the
web constraints. After processing all constraints, we traverse the term, renaming the fresh webs and
datatypes to their representatives from the union-find. Depending on the existing type inference
implementation, performing web inference during type inference may be cheaper than doing it
afterwards as a second pass, since type-checking a term needs to check (potentially large) types for
equality, whereas type inference can short-circuit equality checks between unification variables.
In an existing compiler, one can annotate with fresh webs during parsing, collect the constraints
during type inference, and maintain the mapping from webs to their union-find representations in
an external table. Thus, solving the constraints is the primary compile-time cost of implementing
this analysis which, as seen from our table, is bounded by milliseconds for benchmarks several
hundreds of lines long, even when done as a secondary pass.

Our web analysis is faster than and just as precise as CFAs on our benchmarks, while simultane-
ously enabling flow-directed, type-directed, and type-preserving program transformations.

6.1 Qalitative comparison to CFAs
In the simply-typed -calculus, a standard 0-CFA should always be more precise than our type-
based analysis. This is primarily because the monotone (less-than-or-equal-to) constraints of the
flow-analysis are essentially replaced by equality constraints in the type system. This idea has been
explored in the past to design efficient CFAs (see the related work in Section 7).

One simple example [18] demonstrating the gap between CFA and our approach is

let id = fun (x : bool) -> x in

let a = id true in

let b = id false in ...

The type-based analysis finds that both values can flow to both a and b. A traditional 0-CFA finds
that true flows to a, but not to b, with false flowing to both. The gap in precision should always
exist for the simply-typed -calculus.
With polymorphism, however, the type-based analysis can be more precise than a standard

0-CFA. For example, the following is well-typed and distinguishes between the webs u2 and u3.

let f (x : ’a * ’b ->(*u1*) ’c, y : ’a, z : ’b) = x(y, z) in

let res1 = f (fun (x, y) ->(*u1*) x(y)(*u2*), fun (x: int) ->(*u2*) 3 + x, 5) in

let res2 = f (fun (w, v) ->(*u1*) w(v)(*u3*), fun (w: int) ->(*u3*) 4 + w, 6) in ...

0-CFA conflates the functions flowing to y even if it tracks (non-web) type instantiations for
polymorphic variables, a-la Adsit and Fluet [3]. Extending such a method to using the web type
system presented in this paper can improve the precision of CFAs. Finally, by modifying this
example to layer multiple calls, one can construct examples that beat -CFA, for any given  .
Transformations can increase the precision of the type-based web analysis. For example, con-

tractive transformations can remove constraints, permitting more precise webs. Contraction and
specialization like inlining iteratively simplify points in the program that introduce imprecision,
which helps both CFAs and our coarser analysis. Additionally, as one reviewer observed, the
elimination web-splitting transform roughly changes the precision of the analysis to 1-CFA, as
specializing a function based on its call sites is very similar to a 1-CFA tracking which call the
abstract state came from.
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7 Related Work
7.1 Traditional rewriting
Traditional rewriting engines, of which perhaps the most sophisticated and tuned is GHC, rely
on cascading local transformations to propagate changes to producers or consumers, which con-
sequently propagates changes to types. This happens by (1) introducing wrappers for s à la
worker-wrapper [17, 37], (2) moving interface changes (e.g., DPE) to the wrapper, and (3) special-
izing s via inlining. Essentially, changes to a function, such as deleting a dead parameter, are
floated up to the header, which then get inlined appropriately. After inlining, the wrapper either
(1) arrives at a call and is eliminated, (2) is passed to a higher-order function, resulting in further
floating and specialization, or (3) is stuck, due to e.g., being put in a data structure or passed to
another module. For example, consider the following transforms, where a is a large piece of code
that inhibits inlining h, and y is dead. The goal: propagate DPE for f.
let h(g) =

let a = _ in

let f(x,y) = _ in

g(f)

⇝

let h(g) =

let a = _ in

let f(x) = _ in

g(fun (x,y) -> f(x))

⇝

let i(g) =

let a = _ in

let f(x) = _ in

g(f) in

let h(g) = i(fun f -> g(fun (x,y) -> f(x)))

First, we make a wrapper for f that encapsulates the DPE change, and then inline that wrapper.
Then, as g is applied to a , we should specialize it. To do this, we create a wrapper for h (containing
an -expanded header for g) that encapsulates the specialized behavior. Then, this header for h
can be inlined and reduced, deleting the dead parameter. At the end, the body of h is exactly the
same as the beginning. . . because we did not make a change to h, only f! This rewriting strategy
is elegant: the carefully tweaked and tuned cascading rewrites succeed at exposing the function-
call relationships, and the local rules easily compose, making it easy extensible. [30] We believe
web-based transformations mitigate the following potential downsides.

Reliance on inlining. It heavily relies on inlining for specialization. Inlining is great for specialization
but comes at a cost, as stated by the GHC user guide: “While inlining can often cut through runtime
overheads this usually comes at the cost of not just program size, but also compiler performance.
In extreme cases making it impossible to compile certain code.” [1] Not to mention that inliners
are finicky and full of heuristics [21, 29]. Additionally, propagating changes requires many steps,
which flow-directed transforms shortcut. Although we leave it to future work, we believe that the
extra contraction and user-defined rewrites done “along the way” while propagating can also be
done for the flow-based transformations.

Incompleteness and geing stuck. Propagated transformations can get “stuck.” For example, if h was
packaged into a list constructed in a recursive loop, it is very difficult to propagate the change
further. Thus the final inlining leaves two extra  terms and calls, which likely has a larger run-time
cost than simply passing the dead parameter. To fix this, the compiler would have to go through a
complicated “undo” process for the changes. Fundamentally, the propagation strategy is hoping
that its specializations will be an optimization. To be clear: it usually is! Semantic web-based
transformations handle the case of higher-order functions and data structures uniformly, and webs
also provide the ability to “look into the future” of the propagation and tell if a transformation is
not going to work, or determine why it will not work out and perform web-splitting or inlining.

7.2 Program analysis and flow-directed transformations
Flow-analyses and flow-directed program transformations have a long history, and the following
is by no means an exhaustive list. Shivers [39] first introduced the well-known -CFA analysis
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and observes that the which-function-called-where information can be easily extracted, which is
referred to as the call cache. Following, Shivers [40] describes “useless-variable elimination” — a
web-based version of DPE that chases variables references through calls to see if they are actually
used. Equivalently, this is the fixpoint of DPE applied to every web. Serrano [38] also describes the
function-call relationship information as the “T ” property, using it to optimize away portions of
closure structure in the Bigloo Scheme compiler. Steckler and Wand [42] introduces an analysis and
transformation that reduces the number of free variables closures package, at the cost of passing
additional extra arguments. To enable this, they use “the protocol”, which essentially ensures that
the transformation occurs on a per-web basis. Dimock et al. [14] perform “flow-based” closure
representation specialization, selective defunctionalization and “pollution removal”, and flow-based
inlining (inlining when webs contain a single function), which are examples of non-injective
web-splitting and web-based inlining. They call constrained functions “colleagues.”

MLton uses flow-directed defunctionalization and closure conversion [10] to lower from a higher-
order to a first-order representation, that is then targeted by first-order optimizations. Recently
Brandon et al. [9] revisited defunctionalization via specialization, defining a “-set” annotated
language. Their type system is more complicated because the flow analysis is more precise; in
particular, they introduce the equivalent of “web-annotation polymorphism” that can produce more
precise webs. The extra precision limits the type-preserving transformations.

Type-directed or type-driven transformations [44] are essentially web-based transformations on
very coarse webs: only one per type. For example, Bell et al. [6] introduces type-driven defunctional-
ization, in which e.g., all functions of type “int -> int” will be in the same web. These approaches
rely on equality constraints, just as our analysis does. Forgoing the directed ⊑ constraints of
fixpoint-based CFAs in favor of symmetric equality constraints to produce a faster analysis is a
well-explored theme in the CFA literature [2, 13, 20, 36]. Our way of encoding webs in the type
system is novel.
The Certicoq compiler [28] actually contains web annotations for s and calls named fun_tags

which are used to prove correctness. The proofs only care about over-approximating the function-
call relationship, but precise webs are not used in practice: only one web per arity. As a non-
optimization example, Frank et al. [16] use web-annotations on functions during random program
generation (for property-based testing) to generate parameters at the same time as their uses,
increasing the probability that parameters are actually used.
To our knowledge and against our expectation, refactoring tools do not combine flow analysis

and type preservation. There are tools that preserve types in the object-oriented setting [45, 46]
which deal with subtyping but not analyzing higher-order functions, and there are tools that use
CFAs but are unconcerned with types [19, 23].

8 Conclusion and Future Work
Webs are the constraints of the semantic relationship between producers and consumers. Webs are
the fundamental structure underlying many program transformations, which we explicitly expose in
our intermediate language to describe web-based transformations, which are often generalizations
of transformations in existing compilers. These are fundamentally semantically local, looking past
syntax and binding. Our analysis hits a “sweet spot” in the CFA design space: a simple but precise
type system, lightweight inference, leading to flow-directed, type-directed, and type-preserving
transformations. For future work, there is a large design space for webs and transformations:
when to specialize, how to specialize, adapting further existing transformations to webs, designing
new web-based transformations via fusion and fixpoints, dynamically maintains precise webs,
and studying the impact of such transformations, although prior work on defunctionalization
demonstrates that exploiting web information provides clear benefits.
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Data availability statement
Our prototype implementation in the 3CPS compiler containing our web inference, flow analysis,
benchmarks, and three web-based transformations (uncurrying, arity-raising, and dead-elimination)
is available via Zenodo [33]. It contains README.md files that describe how to reproduce our results
and documentation on where particular pieces of code are located within the compiler.
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